‘

B -
e ————————_ S W)

Cambridge IGCSE 0478
Computer Science

FRITZ EUGENE BANSAG

SO .

KNOWING WHAT YOU KNOW

* GO to https://joinmyquiz.com
* Write your name and grade level

*Join Code:

Cambridge 0478 Exam Components

Components at a glance

This table summarises the key information about each examination paper. You can find details and advice on how to approach
each component in the ‘About each paper' sub-section.

Paper1 1 hour 45 Questions will be based on Topics 1-6 of | Short-answer and

minutes the subject content structured questions
Computer

Systems 75 marks All guestions are
compulsory

Mo calculators are
permitted

Externally assessed

Paper 2 1 hour 45 Questions will be based on Topics 7-10 | Short-answer and
minutes of the subject content structured questions and a

Algorithms, . .
. scenario-based question

Programming 75 marks
and Logic All questions are
compulsory

Mo calculators are
permitted

Externally assessed

PSEUDOCODE IN EXAMINED COMPONENTS

Pseudocode is presented in a monospaced (fixed-width) font such as Courier Wew. The size of the font
will be consistent throughout.

Lines are indented by four spaces to indicate that they are contained within a statement in a previous line.

Where it is not possible to fit a statement on one line any continuation lines are indented by two spaces. In
cases where line numbering is used, this indentation may be omitted. Every effort will be made to make sure
that code statements are not longer than a line of code, unless this is absolutely necessary.

Mote that the THEN and ELSE clauses of an 1F statement are indented by only two spaces (see Section 5.1).

Cases in crsE statements are also indented by only two places (see Section 5.2).

PSEUDOCODE IN EXAMINED COMPONENTS

Keywords are in uppercase, e.g. IF, EREPEAT DURE. (Different keywords are explained in later
sections of this guide.)

Identifiers are in mixed case (sometimes referred to as camelCase or Pascal case) with uppercase letters
indicating the beginning of new words, for example Nu -OfF1

Meta-variables — symbols in the pseudocode that should be substituted by other symbols — are enclosed in
angled brackets < > (as in Backus-Naur Form). This is also used in this guide.

PSEUDOCODE IN EXAMINED COMPONENTS

Where it is necessary to number the lines of pseudocode so that they can be referred to, line numbers are
presented to the left of the pseudocode with sufficient space to indicate clearly that they are not part of the
pseudocode statements.

Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing. This
will also be clearly stated.

Each line representing a statement is numbered. However when a statement runs over one line of text, the
continuation lines are not numbered.

Comments are preceded by two forward slashes // . The comment continues until the end of the line. For
multi-ine comments, each line is preceded by / /.

Mormally the comment is on a separate line before, and at the same level of indentation as, the code it refers
to. Occasionally, however, a short comment that refers to a single line may be at the end of the line to which
it refers.

PSEUDOCODE IN EXAMINED COMPONENTS

Where it is necessary to number the lines of pseudocode so that they can be referred to, line numbers are
presented to the left of the pseudocode with sufficient space to indicate clearly that they are not part of the
pseudocode statements.

Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing. This
will also be clearly stated.

Each line representing a statement is numbered. However when a statement runs over one line of text, the
continuation lines are not numbered.

Comments are preceded by two forward slashes // . The comment continues until the end of the line. For
multi-ine comments, each line is preceded by / /.

Mormally the comment is on a separate line before, and at the same level of indentation as, the code it refers
to. Occasionally, however, a short comment that refers to a single line may be at the end of the line to which
it refers.

VARIABLES, CONSTANTS, & DATATYPES

The following keywords are used to designate atomic data types:
GER : A whole number
A number capable of containing a fractional part
A single character
A seguence of zero or more characters

The logical values TRUE and FALSE

Literals of the above data types are written as follows:
Integers : Written as normal in the denary system,eg. 5, -3

Real : Always written with at least one digit on either side of the decimal point, zeros being added if
P Co e A0

necessary,eg. 4.7, 0.3, -4.0, 0.0
Char: A single character delimited by single guotes, eg. '=",

String: Delimited by double quotes. A string may contain no characters (i.e. the empty siring) e.qg.

"This is a string", ™"

Boclean: TRUE, FALSE

2. VARIABLES, CONSTANTS, & DATATYPES

et T e
Entimnet

3 ld

Identifiers (the names given to variables, constants, procedures and functions) are in mix case. They can
only contain letters (A-2, a-z) and digits (0-2). They must start with a letter and not a digit. Accented
letters and other characters, including the underscore, should not be used.

As in programming, it is good practice to use identifier names that describe the variable, procedure or
function they refer to. Single letters may be used where these are conventional (such as 1 and 3 when

dealing with array indices, or X and ¥ when dealing with coordinates) as these are made clear by the
convention.

Keywords identified elsewhere in this guide should never be used as variables.

Identifiers should be considered case insensitive, for example, Countdown and Count Down should not be
used as separate variables.

A Aociamnrmante
P [{ | b
.5 FaalUiinnel s

The assignment operator is +— .

Assignments should be made in the following format:

2. VARIABLES, CONSTANTS, & DATATYPES

2.4 Assignments
The assignment operator is +— .

Assignments should be made in the following format:

The identifier must refer to a variable (this can be an individual element in a data structure such as an array
or an abstract data type). The value may be any expression that evaluates to a value of the same data type
as the variable.

Counter-+ 1

HumberQfHours * HourlyEate

3. ARRAYS

StudentNames[1]

NoughtsAndCr

StudentNames |

Arrays can be used in assignment statements (provided they have same size and data type). The following
is therefore allowed:

Einrinio . aeait

3. ARRAYS

Arrays can be used in assignment statements (provided they have same size and data type). The following
is therefore allowed:

A statement should not, however, refer to a group of array elements individually. For example, the following
construction should not be used.

Beprns i s S Ry
Studentia 5 I'C

Instead, an appropriate loop structure is used to assign the elements individually. For example:

3. ARRAYS

Arrays can be used in assignment statements (provided they have same size and data type). The following
is therefore allowed:

A statement should not, however, refer to a group of array elements individually. For example, the following
construction should not be used.

Beprns i s S Ry
Studentia 5 I'C

Instead, an appropriate loop structure is used to assign the elements individually. For example:

4. COMMON OPERATIONS

4.1 Input and output

Values are input using the INFUT command as follows:
INFOT <identifier>

The identifier should be a variable (that may be an individual element of a data structure such as an array. or
a custom data type).

Values are output using the OUTEUT command as follows:

GUTEUT <wvalue(s)>

Several values, separated by commas, can be output using the same command.

Note that the syllabus for IGCSE (0478) gives READ and ERINT as examples for INFUT and
OUTEOT, respectively.

4. COMMON OPERATIONS

A 3 R il prme e e
S Y :_!!.r!!l:i,ll._- uLe -'II_!'::r:b

Standard arithmetic operator symbols are used:

Addition
Subtraction
Multiplication
Division

Care should be taken with the division operation: the resulting value should be of data type REAL, even if the
operands are integers.

The integer division operators MOD and DIV can be used. However, their use should be explained explicitly
and not assumed.

Multiplication and division have higher precedence over addition and subtraction (this is the normal
mathematical convention). However, it is good practice to make the order of operations in complex
expressions explicit by using parentheses.

4. COMMON OPERATIONS

Standard arithmetic operator symbols are used:
Addition
Subtraction
Multiplication
Division

Care should be taken with the division operation: the resulting value should be of data type REAL, even if the
operands are integers.

The integer division operators MOD and DIV can be used. However, their use should be explained explicitly
and not assumed.

Multiplication and division have higher precedence over addition and subtraction (this is the normal

mathematical convention). However, it is good practice to make the order of operations in complex
expressions explicit by using parentheses.

The only logic operators {also called relational operators) used are AND, OR and NOT. The operands and
results of these operations are always of data type BOOLEAN.

In complex expressions it is advisable to use parentheses to make the order of operations explicit.

5. SELECTION

Mote that the THEN and ELSE clauses are only indented by two spaces. (They are, in a sense, a
continuation of the IF statement rather than separate statements).

When IF statements are nested, the nesting should continue the indentation of two spaces. In particular,
run-on THEN IF and ELSE IF lines should be avoided.

5. SELECTION

Mote that the THEN and ELSE clauses are only indented by two spaces. (They are, in a sense, a
continuation of the IF statement rather than separate statements).

When IF statements are nested, the nesting should continue the indentation of two spaces. In particular,
run-on THEN IF and ELSE IF lines should be avoided.

5. SELECTION

Mote that the THEN and ELSE clauses are only indented by two spaces. (They are, in a sense, a
continuation of the IF statement rather than separate statemenis).

When I statements are nested, the nesting should continue the indentation of two spaces. In particular,
run-on THEN IF and ELSE IF lines should be avoided.

> ChamplonsScore
HighestScore
"

champion and h

S 1 3 e
new Cciamploh

5. SELECTION

It is best practice to keep the branches to single statements as this makes the pseudocode more readable.
Similarly single values should be used for each case. If the cases are more complex, the use of an IF
statement, rather than a CASE statement, should be considered.

Each case clause is indented by two spaces. They can be seen as continuations of the CASE statement
rather than new statements.

MNote that the case clauses are tested in sequence. When a case that applies is found, its statement is
executed and the CASE statement is complete. Control is passed to the statement after the ENDCASE.
remaining cases are not tested.

If present, an OTHERWISE clause must be the last case. Its statement will be executed if none of the
preceding cases apply.

E

et
=
=]

2 k4
i =

fi=

ol

iz

=

e
£1]
L}

o

I
r
;
[

-

momomom

0o 0

[
[

I m
e

m
F

ol W R T

L

=

2
i I
H

b

L)

6. ITERATION

The identifier must be a variable of data type INTEGER. and the values should be expressions that evaluate
to integers.

1ua2 inclusive, running the
statements inside the £ valuesZ the statements will be

executed once, and if valuel > walue=2 the statements will not be executed.

It is good practice to repeat the identifier after NEX'T, particularly with nested FOR loops.

6. ITERATION

> 4 Connt-econtrallad (EORY loone
I._.] - '._.| |_| 1 |_ '._, x,'f 1 L L L | _] 1 '.._.'U 'r_.- I\:,"
Count-controlled loops are written as follows:

FOR <i

<=t a

NEXT

The identifier must be a variable of data type TNTEGER, and the values should be expressions that evaluate
to integers.

The variable is assigned each of the integer values from valuel to valusZ inclusive, running the
statements inside the FOR loop after each assignment. f valuel = valueZ the statements will be

executed once, and if valuel > walue?Z the statements will not be executed.

It is good practice to repeat the identifier after NEXT, particularly with nested FOR loops.

Anincrement can be specified as follows:

NEXT

The increment must be an expression that evaluates to an integer. In this case the identi fier will be
assigned the values from valuel in successive increments of increment until it reaches valueZ. Ifit
goes past valueZ, the loop terminates. The increment can be negative.

6. ITERATION

Anincrement can be specified as follows:

The increment must be an expression that evaluates to an integer. In this case the identi fier will be

assigned the values from wvaluel in successive increments of increment until it reaches valueZ [fit
goes past the loop terminates. The increment can be negative.

Example — nested FOR100DS

Total « 0
FOR Row «— 1 TO MaxRow
RowTotal «— 0
FOR Column «— 1 TO 10
RowTotal ~ RowTotal + Amount [Row,Column]
NEXT Column
OUTPUT "Total for Row ", Row, " is ", RowTotal
Total ~ Total + RowTotal
NEXT Row
OUTPUT “The grand total is ", Total

6. ITERATION

Anincrement can be specified as follows:

The increment must be an expression that evaluates to an integer. In this case the identi fier will be

assigned the values from wvaluel in successive increments of increment until it reaches valueZ [fit
goes past the loop terminates. The increment can be negative.

Example — nested FOR100DS

Total « 0
FOR Row «— 1 TO MaxRow
RowTotal «— 0
FOR Column «— 1 TO 10
RowTotal ~ RowTotal + Amount [Row,Column]
NEXT Column
OUTPUT "Total for Row ", Row, " is ", RowTotal
Total ~ Total + RowTotal
NEXT Row
OUTPUT “The grand total is ", Total

6. ITERATION

DCATLHIKMTUH A e
AT UNTIL) lo

Post-condition loops are written as follows:

The condition must be an expression that evaluates to a Boolean.

The statements in the loop will be executed at least once. The condition is tested after the statements are
executed and if it evaluates to T : the loop terminates, otherwise the statements are executed again.

ITERATION

The condition must be an expression that evaluates to a Boolean.

The statements in the loop will be executed at least once. The condition is tested after the statements are
executed and if it evaluates to TRUE the loop terminates, otherwise the statements are executed again.

Example — REPEAT UNTIL statement

REPEAT
OUTEUT

INE

UNTIL

6. ITERATION

The condition must be an expression that evaluates to a Boolean.
The condition is tested before the statements, and the statements will only be executed if the condition

evaluates to TRUE. After the statements have been executed the condition is tested again. The loop
terminates when the condition evaluatesio &

The statements will not be executed if, on the first test, the condition evaluates to FALSE

ITERATION

6.3 Pre-conditio

L
Pre-condition loops are written as follows:

E <ocondition> DO

WLk

=1 B T T TaT
ENDMHILE

The condition must be an expression that evaluates to a Boolean.

The condition is tested before the statements, and the statements will only be executed if the condition
evaluates to TRUE. After the statements have been executed the condition is tested again. The loop

terminates when the condition evaluates to FALSE.

The statements will not be executed if, on the first test, the condition evaluates to FALSE.

KNOWING WHAT YOU LEARNED

* GO to https://joinmyquiz.com
* Write your name and grade level

*Join Code:

